
Accordingly, this whitepaper will further categorize discoverability risks as 1) left-of-breach, 
2) mid-breach, and 3) right-of-breach or post-breach. The fundamental concept behind API discoverability is 
that you cannot protect what you do not know exists.

Left-of-Breach
Left-of-Breach refers to the timeline prior to a breach occurring. Left-of-Breach discoverability refers to 
having adequate visibility into your API environment to take the steps necessary to minimize the likelihood 
or risk of a breach occurring and includes ensuring that your organization 
has a complete inventory and comprehensive documentation of all APIs 
that exist within your organization.

Risks
According to the Salt Labs 2023 Q3 State of API Security Report, 86% of 
surveyed organizations stated that they “lack confidence that their API 
inventory is complete.”1 API inventory challenges are often a result of 
“API Sprawl” and a general lack of API governance. The risks of undocu-
mented APIs include difficulties with future development efforts, insecure 
APIs being used in production environments, and lack of monitoring or 
response capabilities if a breach does occur.

Controlling Risks Prior to Breach
At a high level, the Left-of-Breach discoverability controls are all components of implementing Development, 
Security, and Operations (DevSecOps) practices and implementing API Governance processes. At a more 
granular level, key controls for ensuring that organizations have the required visibility into their API environ-
ment Left-of-Breach include:

• Creating and maintaining an API inventory;

• API Documentation - APIs should be documented so that appropriate monitoring and alerting can 
be configured;

• API Discovery - Organizations should invest in tools which automate the discovery of APIs within the 
environment.

Mid-Breach
Mid-Breach refers to the timeline while a breach is actively occurring. Mid-Breach discoverability includes 
having sufficient logging within your API environment as well as a sufficient understanding (and documenta-
tion) of your APIs to implement and automate actionable alerts and the staffing and processes necessary to 
quickly detect and respond to a breach.

Risks
Web applications, especially those dedicated to processing sensitive data, are continually under attack by 
cybercriminals. Organizations must take measures to actively monitor for breaches and perform a coordinat-
ed response. Organizations should monitor for unauthorized access (from unauthorized users, compro-
mised users, or even from unapproved IP addresses) to API endpoints which can access sensitive data. 
However, without sufficient understanding and documentation of their API environment, organizations 
face several significant risks, including:

• APIs without sufficient logging cannot be monitored for abuse or compromise;

Application Programming Interfaces
Security Risks and Controls
Introduction
Application Programming Interfaces (APIs) provide a way for users and other applications to interact with 
software and data. It may be helpful to think of an API as a sort of broker; just like stock brokers receive buy 
and sell orders, software APIs use specific communication jargon — or protocols — to transact information 
requests. This analogy is useful to understand how a website API handles requests for a web application, by 
receiving instructions from people using web browsers (e.g., “show me the news front page in English, and 
only for my local region”), and then serve the information to the browser that corresponds with the specific 
request.

This request and response process is how APIs are able to present dynamic, data-driven web content as web 
pages in browsers. It allows for scalable application design, so that web pages can handle millions of 
requests and still provide a high-quality experience to users. However, API use presents a set of specific 
cybersecurity risk challenges that must be considered in the development, deployment, and maintenance of 
APIs. This whitepaper will focus on the best practices for securing APIs and the technologies and services 
that can be used to protect them.

API Risks and Controls
This whitepaper will discuss risks and controls associated with various API formats divided into three broad 
categories of risk, 1) Discoverability, 2) Input Validation, and 3) Access Control.

Discoverability Risks
Discoverability risks are not themselves a type of attack, but by publishing an API on the Internet and 
allowing connections from public internet systems, organizations allow users and threat actors to enumer-
ate, or discover the various functions of an API. In short, if you don’t understand exactly how your API works, 
but publish it, threat actors may discover things that your API will do that you are not even aware of! 

• APIs that are not well-documented may not be properly understood in order to accurately interpret 
what logs do exist;

• APIs that are not known to exist cannot be monitored for abuse or compromise.

Controls That Can Reduce Impact During a Breach
The amount of time that passes from the initial discovery of a breach until the breach has been remediated 
and the resumption of normal business activity is the strongest indicator of how much impact the organiza-
tion will take as a result of the breach. Getting back to “the day before the breach,” from an operational 
perspective, is the primary goal of any response activity. While discussion of specific controls described 
below is outside of the scope of this whitepaper, organizations can rely on the following controls to detect 
and respond to an intrusion that leverages API vulnerabilities and minimize the time it takes to recover from 
an intrusion:

• Managed Extended Detection and Response (MXDR)

• Specific, application-based alerting related to API use via MXDR SIEM

• Next Generation Antivirus and Endpoint Detection & Response

• Network Segmentation and Data Segregation

Right-of-Breach
Right-of-Breach API Security involves ensuring that response 
activities are well-informed, remediation activity is effective, 
and the application of lessons learned from an incident 
is effective.

Risks
During an Incident Response (IR), incident responders may not 
have an adequate understanding or sufficient logs to reach a 
determination on root-cause or the impact of any breach which 
may have occurred. IR engagements are often expensive and 
time consuming, and lack of API documentation may result in 
extended IR engagements or incomplete conclusions. Insuffi-
cient (or non-existent) logging may prevent incident responders 
from having the visibility necessary to determine what or how 
the breach occurred.

Controls
The following controls are critical in successfully resolving an 
intrusion that has leveraged web APIs:

• API Documentation

• Log Retention

• Incident Response Plan

• Tabletop Exercises

Input Validation Risks
APIs exist to facilitate interaction with data between two or more applications. Regardless of 
API format, almost every type of API attack is essentially the result of some type of input 

handling vulnerability, and the controls to mitigate those attacks are to validate the way APIs handle and 
respond to that input. The result of various Input Validation exploits can generally be divided into two catego-
ries, 1) Denial of Service Queries and 2) Injection and Extraction Queries.

Denial of Service Queries
API Denial-of-Service attacks are any type of API attack which has 
a goal of preventing authorized users access to the application or 
the data processed by the application.

Risks
API Denial-of-Service attacks are the result of excessive use of 
application resources. Web Applications process API requests on 
hardware that have finite resources (CPU, memory, storage), and 
if applications are not configured to limit requests to those 
resources, a Denial-of-Service may occur. The OWASP API Top 10 
categorizes these types of attacks as “Lack of Resources or 
Rate Limiting” vulnerabilities.2 Inadequate system resources and 
ineffective API rate limiting introduce the risk of inaccessible 
applications.

Controls
In order to minimize the risk of API Denial-of-Service attacks 
applications should implement:

• Static Application Security Testing (SAST) 

• Rate limiting to prevent system or network resource exhaustion

• Application delivery platforms, such as Docker, for simple resource management

• Web Application Firewalls (WAFs) 

• Enforced server-side validation of requests and record response count limitations 

• Enforced maximum data sizes and string lengths limitations

Injection and Extraction Queries
There are many different types of API attacks which can be categorized as “malicious queries”, but at a 
high-level the goal of nearly all Malicious API Queries is to either inject data or to extract data from the 
application or the systems where the application resides.

Injection Attack Risks
Injection attacks are any type of attack where the purpose is to add data to the application or the systems 
where the application resides. This includes attacks where the API is abused to inject a shell that could 
provide threat actors with remote access to the underlying system. Injection attacks also include inserting or 
modifying data to introduce incorrect, fraudulent, or invalid data. Organizations must consider the type of 
data their application processes and the potential for abuse if cybercriminals are able to insert or modify 
that data.

Cyber Innovation Center (CIC)
6300 Texas Street, Ste. 240, Bossier City, LA 71111
WWW.IINFOSEC.COM
(888) 860-0452 

Extraction Attack Risks
Extraction attacks are any type of attack where the purpose is to exfiltrate data from the application or the 
systems where the application resides. Extraction attacks can include API abuse that reveals vulnerabilities, 
and privilege escalation through use of these vulnerabilities. Extraction attacks also include those which 
allow unauthorized individuals to access data from the application itself. 

Controls
There are many different types of API malicious query attacks, and each of these has corresponding preven-
tative controls. Implementing the preventative measures for the OWASP API Top 10 Vulnerabilities will 
significantly improve an organization's API risk posture surrounding malicious queries. However, organiza-
tions should also consider the following controls to limit their risk to Malicious API Queries:

• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

• Penetration Testing

Access Control
API Access Control Risks can broadly be categorized into 1) Authorization Risks and 2) Authentication Risks. 
Vulnerabilities such as Insecure Direct Object Reference (IDOR) are made possible via parameter tampering 
and can allow attackers unauthorized access to resources.

User validation plays another critical part in API security. The level of exploitation risk differs depending on 
the API format. Stateless APIs such as RPC, REST, and GraphQL pose a greater risk as sessions are stored 
client-side. Client-side tokens, such as JSON Web Tokens (when not properly signed), can be decoded to 
reveal potentially sensitive information and edited before being passed to the server. Unauthenticated API 
calls and data exposure can be the result of such errors and misconfigurations.

Controls
• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

• Web Application Penetration Testing

• Multi-Factor Authentication (MFA)

• API Gateway Systems

Contributors
Evans Foster, Jason Ingalls, Chase Theodos, Cyrus Robinson, Kim Buckley, and John Frasier



Accordingly, this whitepaper will further categorize discoverability risks as 1) left-of-breach, 
2) mid-breach, and 3) right-of-breach or post-breach. The fundamental concept behind API discoverability is 
that you cannot protect what you do not know exists.

Left-of-Breach
Left-of-Breach refers to the timeline prior to a breach occurring. Left-of-Breach discoverability refers to 
having adequate visibility into your API environment to take the steps necessary to minimize the likelihood 
or risk of a breach occurring and includes ensuring that your organization 
has a complete inventory and comprehensive documentation of all APIs 
that exist within your organization.

Risks
According to the Salt Labs 2023 Q3 State of API Security Report, 86% of 
surveyed organizations stated that they “lack confidence that their API 
inventory is complete.”1 API inventory challenges are often a result of 
“API Sprawl” and a general lack of API governance. The risks of undocu-
mented APIs include difficulties with future development efforts, insecure 
APIs being used in production environments, and lack of monitoring or 
response capabilities if a breach does occur.

Controlling Risks Prior to Breach
At a high level, the Left-of-Breach discoverability controls are all components of implementing Development, 
Security, and Operations (DevSecOps) practices and implementing API Governance processes. At a more 
granular level, key controls for ensuring that organizations have the required visibility into their API environ-
ment Left-of-Breach include:

• Creating and maintaining an API inventory;

• API Documentation - APIs should be documented so that appropriate monitoring and alerting can 
be configured;

• API Discovery - Organizations should invest in tools which automate the discovery of APIs within the 
environment.

Mid-Breach
Mid-Breach refers to the timeline while a breach is actively occurring. Mid-Breach discoverability includes 
having sufficient logging within your API environment as well as a sufficient understanding (and documenta-
tion) of your APIs to implement and automate actionable alerts and the staffing and processes necessary to 
quickly detect and respond to a breach.

Risks
Web applications, especially those dedicated to processing sensitive data, are continually under attack by 
cybercriminals. Organizations must take measures to actively monitor for breaches and perform a coordinat-
ed response. Organizations should monitor for unauthorized access (from unauthorized users, compro-
mised users, or even from unapproved IP addresses) to API endpoints which can access sensitive data. 
However, without sufficient understanding and documentation of their API environment, organizations 
face several significant risks, including:

• APIs without sufficient logging cannot be monitored for abuse or compromise;

Application Programming Interfaces
Security Risks and Controls
Introduction
Application Programming Interfaces (APIs) provide a way for users and other applications to interact with 
software and data. It may be helpful to think of an API as a sort of broker; just like stock brokers receive buy 
and sell orders, software APIs use specific communication jargon — or protocols — to transact information 
requests. This analogy is useful to understand how a website API handles requests for a web application, by 
receiving instructions from people using web browsers (e.g., “show me the news front page in English, and 
only for my local region”), and then serve the information to the browser that corresponds with the specific 
request.

This request and response process is how APIs are able to present dynamic, data-driven web content as web 
pages in browsers. It allows for scalable application design, so that web pages can handle millions of 
requests and still provide a high-quality experience to users. However, API use presents a set of specific 
cybersecurity risk challenges that must be considered in the development, deployment, and maintenance of 
APIs. This whitepaper will focus on the best practices for securing APIs and the technologies and services 
that can be used to protect them.

API Risks and Controls
This whitepaper will discuss risks and controls associated with various API formats divided into three broad 
categories of risk, 1) Discoverability, 2) Input Validation, and 3) Access Control.

Discoverability Risks
Discoverability risks are not themselves a type of attack, but by publishing an API on the Internet and 
allowing connections from public internet systems, organizations allow users and threat actors to enumer-
ate, or discover the various functions of an API. In short, if you don’t understand exactly how your API works, 
but publish it, threat actors may discover things that your API will do that you are not even aware of! 

• APIs that are not well-documented may not be properly understood in order to accurately interpret 
what logs do exist;

• APIs that are not known to exist cannot be monitored for abuse or compromise.

Controls That Can Reduce Impact During a Breach
The amount of time that passes from the initial discovery of a breach until the breach has been remediated 
and the resumption of normal business activity is the strongest indicator of how much impact the organiza-
tion will take as a result of the breach. Getting back to “the day before the breach,” from an operational 
perspective, is the primary goal of any response activity. While discussion of specific controls described 
below is outside of the scope of this whitepaper, organizations can rely on the following controls to detect 
and respond to an intrusion that leverages API vulnerabilities and minimize the time it takes to recover from 
an intrusion:

• Managed Extended Detection and Response (MXDR)

• Specific, application-based alerting related to API use via MXDR SIEM

• Next Generation Antivirus and Endpoint Detection & Response

• Network Segmentation and Data Segregation

Right-of-Breach
Right-of-Breach API Security involves ensuring that response 
activities are well-informed, remediation activity is effective, 
and the application of lessons learned from an incident 
is effective.

Risks
During an Incident Response (IR), incident responders may not 
have an adequate understanding or sufficient logs to reach a 
determination on root-cause or the impact of any breach which 
may have occurred. IR engagements are often expensive and 
time consuming, and lack of API documentation may result in 
extended IR engagements or incomplete conclusions. Insuffi-
cient (or non-existent) logging may prevent incident responders 
from having the visibility necessary to determine what or how 
the breach occurred.

Controls
The following controls are critical in successfully resolving an 
intrusion that has leveraged web APIs:

• API Documentation

• Log Retention

• Incident Response Plan

• Tabletop Exercises

Input Validation Risks
APIs exist to facilitate interaction with data between two or more applications. Regardless of 
API format, almost every type of API attack is essentially the result of some type of input 

handling vulnerability, and the controls to mitigate those attacks are to validate the way APIs handle and 
respond to that input. The result of various Input Validation exploits can generally be divided into two catego-
ries, 1) Denial of Service Queries and 2) Injection and Extraction Queries.

Denial of Service Queries
API Denial-of-Service attacks are any type of API attack which has 
a goal of preventing authorized users access to the application or 
the data processed by the application.

Risks
API Denial-of-Service attacks are the result of excessive use of 
application resources. Web Applications process API requests on 
hardware that have finite resources (CPU, memory, storage), and 
if applications are not configured to limit requests to those 
resources, a Denial-of-Service may occur. The OWASP API Top 10 
categorizes these types of attacks as “Lack of Resources or 
Rate Limiting” vulnerabilities.2 Inadequate system resources and 
ineffective API rate limiting introduce the risk of inaccessible 
applications.

Controls
In order to minimize the risk of API Denial-of-Service attacks 
applications should implement:

• Static Application Security Testing (SAST) 

• Rate limiting to prevent system or network resource exhaustion

• Application delivery platforms, such as Docker, for simple resource management

• Web Application Firewalls (WAFs) 

• Enforced server-side validation of requests and record response count limitations 

• Enforced maximum data sizes and string lengths limitations

Injection and Extraction Queries
There are many different types of API attacks which can be categorized as “malicious queries”, but at a 
high-level the goal of nearly all Malicious API Queries is to either inject data or to extract data from the 
application or the systems where the application resides.

Injection Attack Risks
Injection attacks are any type of attack where the purpose is to add data to the application or the systems 
where the application resides. This includes attacks where the API is abused to inject a shell that could 
provide threat actors with remote access to the underlying system. Injection attacks also include inserting or 
modifying data to introduce incorrect, fraudulent, or invalid data. Organizations must consider the type of 
data their application processes and the potential for abuse if cybercriminals are able to insert or modify 
that data.

The 
fundamental 

concept behind API 
discoverability is that

you cannot protect
what you do not

know exists.

Extraction Attack Risks
Extraction attacks are any type of attack where the purpose is to exfiltrate data from the application or the 
systems where the application resides. Extraction attacks can include API abuse that reveals vulnerabilities, 
and privilege escalation through use of these vulnerabilities. Extraction attacks also include those which 
allow unauthorized individuals to access data from the application itself. 

Controls
There are many different types of API malicious query attacks, and each of these has corresponding preven-
tative controls. Implementing the preventative measures for the OWASP API Top 10 Vulnerabilities will 
significantly improve an organization's API risk posture surrounding malicious queries. However, organiza-
tions should also consider the following controls to limit their risk to Malicious API Queries:

• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

• Penetration Testing

Access Control
API Access Control Risks can broadly be categorized into 1) Authorization Risks and 2) Authentication Risks. 
Vulnerabilities such as Insecure Direct Object Reference (IDOR) are made possible via parameter tampering 
and can allow attackers unauthorized access to resources.

User validation plays another critical part in API security. The level of exploitation risk differs depending on 
the API format. Stateless APIs such as RPC, REST, and GraphQL pose a greater risk as sessions are stored 
client-side. Client-side tokens, such as JSON Web Tokens (when not properly signed), can be decoded to 
reveal potentially sensitive information and edited before being passed to the server. Unauthenticated API 
calls and data exposure can be the result of such errors and misconfigurations.

Controls
• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

• Web Application Penetration Testing

• Multi-Factor Authentication (MFA)

• API Gateway Systems

Contributors
Evans Foster, Jason Ingalls, Chase Theodos, Cyrus Robinson, Kim Buckley, and John Frasier

1“State of API Security Q3 2022” (Salt Labs, 2022), https://salt.security/api-security-trends, 13.



Accordingly, this whitepaper will further categorize discoverability risks as 1) left-of-breach, 
2) mid-breach, and 3) right-of-breach or post-breach. The fundamental concept behind API discoverability is 
that you cannot protect what you do not know exists.

Left-of-Breach
Left-of-Breach refers to the timeline prior to a breach occurring. Left-of-Breach discoverability refers to 
having adequate visibility into your API environment to take the steps necessary to minimize the likelihood 
or risk of a breach occurring and includes ensuring that your organization 
has a complete inventory and comprehensive documentation of all APIs 
that exist within your organization.

Risks
According to the Salt Labs 2023 Q3 State of API Security Report, 86% of 
surveyed organizations stated that they “lack confidence that their API 
inventory is complete.”1 API inventory challenges are often a result of 
“API Sprawl” and a general lack of API governance. The risks of undocu-
mented APIs include difficulties with future development efforts, insecure 
APIs being used in production environments, and lack of monitoring or 
response capabilities if a breach does occur.

Controlling Risks Prior to Breach
At a high level, the Left-of-Breach discoverability controls are all components of implementing Development, 
Security, and Operations (DevSecOps) practices and implementing API Governance processes. At a more 
granular level, key controls for ensuring that organizations have the required visibility into their API environ-
ment Left-of-Breach include:

• Creating and maintaining an API inventory;

• API Documentation - APIs should be documented so that appropriate monitoring and alerting can 
be configured;

• API Discovery - Organizations should invest in tools which automate the discovery of APIs within the 
environment.

Mid-Breach
Mid-Breach refers to the timeline while a breach is actively occurring. Mid-Breach discoverability includes 
having sufficient logging within your API environment as well as a sufficient understanding (and documenta-
tion) of your APIs to implement and automate actionable alerts and the staffing and processes necessary to 
quickly detect and respond to a breach.

Risks
Web applications, especially those dedicated to processing sensitive data, are continually under attack by 
cybercriminals. Organizations must take measures to actively monitor for breaches and perform a coordinat-
ed response. Organizations should monitor for unauthorized access (from unauthorized users, compro-
mised users, or even from unapproved IP addresses) to API endpoints which can access sensitive data. 
However, without sufficient understanding and documentation of their API environment, organizations 
face several significant risks, including:

• APIs without sufficient logging cannot be monitored for abuse or compromise;

Application Programming Interfaces
Security Risks and Controls
Introduction
Application Programming Interfaces (APIs) provide a way for users and other applications to interact with 
software and data. It may be helpful to think of an API as a sort of broker; just like stock brokers receive buy 
and sell orders, software APIs use specific communication jargon — or protocols — to transact information 
requests. This analogy is useful to understand how a website API handles requests for a web application, by 
receiving instructions from people using web browsers (e.g., “show me the news front page in English, and 
only for my local region”), and then serve the information to the browser that corresponds with the specific 
request.

This request and response process is how APIs are able to present dynamic, data-driven web content as web 
pages in browsers. It allows for scalable application design, so that web pages can handle millions of 
requests and still provide a high-quality experience to users. However, API use presents a set of specific 
cybersecurity risk challenges that must be considered in the development, deployment, and maintenance of 
APIs. This whitepaper will focus on the best practices for securing APIs and the technologies and services 
that can be used to protect them.

API Risks and Controls
This whitepaper will discuss risks and controls associated with various API formats divided into three broad 
categories of risk, 1) Discoverability, 2) Input Validation, and 3) Access Control.

Discoverability Risks
Discoverability risks are not themselves a type of attack, but by publishing an API on the Internet and 
allowing connections from public internet systems, organizations allow users and threat actors to enumer-
ate, or discover the various functions of an API. In short, if you don’t understand exactly how your API works, 
but publish it, threat actors may discover things that your API will do that you are not even aware of! 

• APIs that are not well-documented may not be properly understood in order to accurately interpret 
what logs do exist;

• APIs that are not known to exist cannot be monitored for abuse or compromise.

Controls That Can Reduce Impact During a Breach
The amount of time that passes from the initial discovery of a breach until the breach has been remediated 
and the resumption of normal business activity is the strongest indicator of how much impact the organiza-
tion will take as a result of the breach. Getting back to “the day before the breach,” from an operational 
perspective, is the primary goal of any response activity. While discussion of specific controls described 
below is outside of the scope of this whitepaper, organizations can rely on the following controls to detect 
and respond to an intrusion that leverages API vulnerabilities and minimize the time it takes to recover from 
an intrusion:

• Managed Extended Detection and Response (MXDR)

• Specific, application-based alerting related to API use via MXDR SIEM

• Next Generation Antivirus and Endpoint Detection & Response

• Network Segmentation and Data Segregation

Right-of-Breach
Right-of-Breach API Security involves ensuring that response 
activities are well-informed, remediation activity is effective, 
and the application of lessons learned from an incident 
is effective.

Risks
During an Incident Response (IR), incident responders may not 
have an adequate understanding or sufficient logs to reach a 
determination on root-cause or the impact of any breach which 
may have occurred. IR engagements are often expensive and 
time consuming, and lack of API documentation may result in 
extended IR engagements or incomplete conclusions. Insuffi-
cient (or non-existent) logging may prevent incident responders 
from having the visibility necessary to determine what or how 
the breach occurred.

Controls
The following controls are critical in successfully resolving an 
intrusion that has leveraged web APIs:

• API Documentation

• Log Retention

• Incident Response Plan

• Tabletop Exercises

Input Validation Risks
APIs exist to facilitate interaction with data between two or more applications. Regardless of 
API format, almost every type of API attack is essentially the result of some type of input 

handling vulnerability, and the controls to mitigate those attacks are to validate the way APIs handle and 
respond to that input. The result of various Input Validation exploits can generally be divided into two catego-
ries, 1) Denial of Service Queries and 2) Injection and Extraction Queries.

Denial of Service Queries
API Denial-of-Service attacks are any type of API attack which has 
a goal of preventing authorized users access to the application or 
the data processed by the application.

Risks
API Denial-of-Service attacks are the result of excessive use of 
application resources. Web Applications process API requests on 
hardware that have finite resources (CPU, memory, storage), and 
if applications are not configured to limit requests to those 
resources, a Denial-of-Service may occur. The OWASP API Top 10 
categorizes these types of attacks as “Lack of Resources or 
Rate Limiting” vulnerabilities.2 Inadequate system resources and 
ineffective API rate limiting introduce the risk of inaccessible 
applications.

Controls
In order to minimize the risk of API Denial-of-Service attacks 
applications should implement:

• Static Application Security Testing (SAST) 

• Rate limiting to prevent system or network resource exhaustion

• Application delivery platforms, such as Docker, for simple resource management

• Web Application Firewalls (WAFs) 

• Enforced server-side validation of requests and record response count limitations 

• Enforced maximum data sizes and string lengths limitations

Injection and Extraction Queries
There are many different types of API attacks which can be categorized as “malicious queries”, but at a 
high-level the goal of nearly all Malicious API Queries is to either inject data or to extract data from the 
application or the systems where the application resides.

Injection Attack Risks
Injection attacks are any type of attack where the purpose is to add data to the application or the systems 
where the application resides. This includes attacks where the API is abused to inject a shell that could 
provide threat actors with remote access to the underlying system. Injection attacks also include inserting or 
modifying data to introduce incorrect, fraudulent, or invalid data. Organizations must consider the type of 
data their application processes and the potential for abuse if cybercriminals are able to insert or modify 
that data.

Almost every type
of API attack is 
essentially the 

result of some type 
of input handling 
vulnerability, and 

the controls to 
mitigate those 
attacks are to 

validate the way 
APIs handle and 

respond to
that input.

Extraction Attack Risks
Extraction attacks are any type of attack where the purpose is to exfiltrate data from the application or the 
systems where the application resides. Extraction attacks can include API abuse that reveals vulnerabilities, 
and privilege escalation through use of these vulnerabilities. Extraction attacks also include those which 
allow unauthorized individuals to access data from the application itself. 

Controls
There are many different types of API malicious query attacks, and each of these has corresponding preven-
tative controls. Implementing the preventative measures for the OWASP API Top 10 Vulnerabilities will 
significantly improve an organization's API risk posture surrounding malicious queries. However, organiza-
tions should also consider the following controls to limit their risk to Malicious API Queries:

• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

• Penetration Testing

Access Control
API Access Control Risks can broadly be categorized into 1) Authorization Risks and 2) Authentication Risks. 
Vulnerabilities such as Insecure Direct Object Reference (IDOR) are made possible via parameter tampering 
and can allow attackers unauthorized access to resources.

User validation plays another critical part in API security. The level of exploitation risk differs depending on 
the API format. Stateless APIs such as RPC, REST, and GraphQL pose a greater risk as sessions are stored 
client-side. Client-side tokens, such as JSON Web Tokens (when not properly signed), can be decoded to 
reveal potentially sensitive information and edited before being passed to the server. Unauthenticated API 
calls and data exposure can be the result of such errors and misconfigurations.

Controls
• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

• Web Application Penetration Testing

• Multi-Factor Authentication (MFA)

• API Gateway Systems

Contributors
Evans Foster, Jason Ingalls, Chase Theodos, Cyrus Robinson, Kim Buckley, and John Frasier



Accordingly, this whitepaper will further categorize discoverability risks as 1) left-of-breach, 
2) mid-breach, and 3) right-of-breach or post-breach. The fundamental concept behind API discoverability is 
that you cannot protect what you do not know exists.

Left-of-Breach
Left-of-Breach refers to the timeline prior to a breach occurring. Left-of-Breach discoverability refers to 
having adequate visibility into your API environment to take the steps necessary to minimize the likelihood 
or risk of a breach occurring and includes ensuring that your organization 
has a complete inventory and comprehensive documentation of all APIs 
that exist within your organization.

Risks
According to the Salt Labs 2023 Q3 State of API Security Report, 86% of 
surveyed organizations stated that they “lack confidence that their API 
inventory is complete.”1 API inventory challenges are often a result of 
“API Sprawl” and a general lack of API governance. The risks of undocu-
mented APIs include difficulties with future development efforts, insecure 
APIs being used in production environments, and lack of monitoring or 
response capabilities if a breach does occur.

Controlling Risks Prior to Breach
At a high level, the Left-of-Breach discoverability controls are all components of implementing Development, 
Security, and Operations (DevSecOps) practices and implementing API Governance processes. At a more 
granular level, key controls for ensuring that organizations have the required visibility into their API environ-
ment Left-of-Breach include:

• Creating and maintaining an API inventory;

• API Documentation - APIs should be documented so that appropriate monitoring and alerting can 
be configured;

• API Discovery - Organizations should invest in tools which automate the discovery of APIs within the 
environment.

Mid-Breach
Mid-Breach refers to the timeline while a breach is actively occurring. Mid-Breach discoverability includes 
having sufficient logging within your API environment as well as a sufficient understanding (and documenta-
tion) of your APIs to implement and automate actionable alerts and the staffing and processes necessary to 
quickly detect and respond to a breach.

Risks
Web applications, especially those dedicated to processing sensitive data, are continually under attack by 
cybercriminals. Organizations must take measures to actively monitor for breaches and perform a coordinat-
ed response. Organizations should monitor for unauthorized access (from unauthorized users, compro-
mised users, or even from unapproved IP addresses) to API endpoints which can access sensitive data. 
However, without sufficient understanding and documentation of their API environment, organizations 
face several significant risks, including:

• APIs without sufficient logging cannot be monitored for abuse or compromise;

Application Programming Interfaces
Security Risks and Controls
Introduction
Application Programming Interfaces (APIs) provide a way for users and other applications to interact with 
software and data. It may be helpful to think of an API as a sort of broker; just like stock brokers receive buy 
and sell orders, software APIs use specific communication jargon — or protocols — to transact information 
requests. This analogy is useful to understand how a website API handles requests for a web application, by 
receiving instructions from people using web browsers (e.g., “show me the news front page in English, and 
only for my local region”), and then serve the information to the browser that corresponds with the specific 
request.

This request and response process is how APIs are able to present dynamic, data-driven web content as web 
pages in browsers. It allows for scalable application design, so that web pages can handle millions of 
requests and still provide a high-quality experience to users. However, API use presents a set of specific 
cybersecurity risk challenges that must be considered in the development, deployment, and maintenance of 
APIs. This whitepaper will focus on the best practices for securing APIs and the technologies and services 
that can be used to protect them.

API Risks and Controls
This whitepaper will discuss risks and controls associated with various API formats divided into three broad 
categories of risk, 1) Discoverability, 2) Input Validation, and 3) Access Control.

Discoverability Risks
Discoverability risks are not themselves a type of attack, but by publishing an API on the Internet and 
allowing connections from public internet systems, organizations allow users and threat actors to enumer-
ate, or discover the various functions of an API. In short, if you don’t understand exactly how your API works, 
but publish it, threat actors may discover things that your API will do that you are not even aware of! 

• APIs that are not well-documented may not be properly understood in order to accurately interpret 
what logs do exist;

• APIs that are not known to exist cannot be monitored for abuse or compromise.

Controls That Can Reduce Impact During a Breach
The amount of time that passes from the initial discovery of a breach until the breach has been remediated 
and the resumption of normal business activity is the strongest indicator of how much impact the organiza-
tion will take as a result of the breach. Getting back to “the day before the breach,” from an operational 
perspective, is the primary goal of any response activity. While discussion of specific controls described 
below is outside of the scope of this whitepaper, organizations can rely on the following controls to detect 
and respond to an intrusion that leverages API vulnerabilities and minimize the time it takes to recover from 
an intrusion:

• Managed Extended Detection and Response (MXDR)

• Specific, application-based alerting related to API use via MXDR SIEM

• Next Generation Antivirus and Endpoint Detection & Response

• Network Segmentation and Data Segregation

Right-of-Breach
Right-of-Breach API Security involves ensuring that response 
activities are well-informed, remediation activity is effective, 
and the application of lessons learned from an incident 
is effective.

Risks
During an Incident Response (IR), incident responders may not 
have an adequate understanding or sufficient logs to reach a 
determination on root-cause or the impact of any breach which 
may have occurred. IR engagements are often expensive and 
time consuming, and lack of API documentation may result in 
extended IR engagements or incomplete conclusions. Insuffi-
cient (or non-existent) logging may prevent incident responders 
from having the visibility necessary to determine what or how 
the breach occurred.

Controls
The following controls are critical in successfully resolving an 
intrusion that has leveraged web APIs:

• API Documentation

• Log Retention

• Incident Response Plan

• Tabletop Exercises

Input Validation Risks
APIs exist to facilitate interaction with data between two or more applications. Regardless of 
API format, almost every type of API attack is essentially the result of some type of input 

handling vulnerability, and the controls to mitigate those attacks are to validate the way APIs handle and 
respond to that input. The result of various Input Validation exploits can generally be divided into two catego-
ries, 1) Denial of Service Queries and 2) Injection and Extraction Queries.

Denial of Service Queries
API Denial-of-Service attacks are any type of API attack which has 
a goal of preventing authorized users access to the application or 
the data processed by the application.

Risks
API Denial-of-Service attacks are the result of excessive use of 
application resources. Web Applications process API requests on 
hardware that have finite resources (CPU, memory, storage), and 
if applications are not configured to limit requests to those 
resources, a Denial-of-Service may occur. The OWASP API Top 10 
categorizes these types of attacks as “Lack of Resources or 
Rate Limiting” vulnerabilities.2 Inadequate system resources and 
ineffective API rate limiting introduce the risk of inaccessible 
applications.

Controls
In order to minimize the risk of API Denial-of-Service attacks 
applications should implement:

• Static Application Security Testing (SAST) 

• Rate limiting to prevent system or network resource exhaustion

• Application delivery platforms, such as Docker, for simple resource management

• Web Application Firewalls (WAFs) 

• Enforced server-side validation of requests and record response count limitations 

• Enforced maximum data sizes and string lengths limitations

Injection and Extraction Queries
There are many different types of API attacks which can be categorized as “malicious queries”, but at a 
high-level the goal of nearly all Malicious API Queries is to either inject data or to extract data from the 
application or the systems where the application resides.

Injection Attack Risks
Injection attacks are any type of attack where the purpose is to add data to the application or the systems 
where the application resides. This includes attacks where the API is abused to inject a shell that could 
provide threat actors with remote access to the underlying system. Injection attacks also include inserting or 
modifying data to introduce incorrect, fraudulent, or invalid data. Organizations must consider the type of 
data their application processes and the potential for abuse if cybercriminals are able to insert or modify 
that data.

Extraction Attack Risks
Extraction attacks are any type of attack where the purpose is to exfiltrate data from the application or the 
systems where the application resides. Extraction attacks can include API abuse that reveals vulnerabilities, 
and privilege escalation through use of these vulnerabilities. Extraction attacks also include those which 
allow unauthorized individuals to access data from the application itself. 

Controls
There are many different types of API malicious query attacks, and each of these has corresponding preven-
tative controls. Implementing the preventative measures for the OWASP API Top 10 Vulnerabilities will 
significantly improve an organization's API risk posture surrounding malicious queries. However, organiza-
tions should also consider the following controls to limit their risk to Malicious API Queries:

• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

• Penetration Testing

Access Control
API Access Control Risks can broadly be categorized into 1) Authorization Risks and 2) Authentication Risks. 
Vulnerabilities such as Insecure Direct Object Reference (IDOR) are made possible via parameter tampering 
and can allow attackers unauthorized access to resources.

User validation plays another critical part in API security. The level of exploitation risk differs depending on 
the API format. Stateless APIs such as RPC, REST, and GraphQL pose a greater risk as sessions are stored 
client-side. Client-side tokens, such as JSON Web Tokens (when not properly signed), can be decoded to 
reveal potentially sensitive information and edited before being passed to the server. Unauthenticated API 
calls and data exposure can be the result of such errors and misconfigurations.

Controls
• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

• Web Application Penetration Testing

• Multi-Factor Authentication (MFA)

• API Gateway Systems

Contributors
Evans Foster, Jason Ingalls, Chase Theodos, Cyrus Robinson, Kim Buckley, and John Frasier

2https://github.com/OWASP/API-Security/blob/master/2019/en/src/0xa4-lack-of-resources-and-rate-limiting.md

The goal of nearly 
all Malicious API 

Queries is to either 
inject data or to 

extract data from 
the application or 
the systems where 

the application 
resides.



Accordingly, this whitepaper will further categorize discoverability risks as 1) left-of-breach, 
2) mid-breach, and 3) right-of-breach or post-breach. The fundamental concept behind API discoverability is 
that you cannot protect what you do not know exists.

Left-of-Breach
Left-of-Breach refers to the timeline prior to a breach occurring. Left-of-Breach discoverability refers to 
having adequate visibility into your API environment to take the steps necessary to minimize the likelihood 
or risk of a breach occurring and includes ensuring that your organization 
has a complete inventory and comprehensive documentation of all APIs 
that exist within your organization.

Risks
According to the Salt Labs 2023 Q3 State of API Security Report, 86% of 
surveyed organizations stated that they “lack confidence that their API 
inventory is complete.”1 API inventory challenges are often a result of 
“API Sprawl” and a general lack of API governance. The risks of undocu-
mented APIs include difficulties with future development efforts, insecure 
APIs being used in production environments, and lack of monitoring or 
response capabilities if a breach does occur.

Controlling Risks Prior to Breach
At a high level, the Left-of-Breach discoverability controls are all components of implementing Development, 
Security, and Operations (DevSecOps) practices and implementing API Governance processes. At a more 
granular level, key controls for ensuring that organizations have the required visibility into their API environ-
ment Left-of-Breach include:

• Creating and maintaining an API inventory;

• API Documentation - APIs should be documented so that appropriate monitoring and alerting can 
be configured;

• API Discovery - Organizations should invest in tools which automate the discovery of APIs within the 
environment.

Mid-Breach
Mid-Breach refers to the timeline while a breach is actively occurring. Mid-Breach discoverability includes 
having sufficient logging within your API environment as well as a sufficient understanding (and documenta-
tion) of your APIs to implement and automate actionable alerts and the staffing and processes necessary to 
quickly detect and respond to a breach.

Risks
Web applications, especially those dedicated to processing sensitive data, are continually under attack by 
cybercriminals. Organizations must take measures to actively monitor for breaches and perform a coordinat-
ed response. Organizations should monitor for unauthorized access (from unauthorized users, compro-
mised users, or even from unapproved IP addresses) to API endpoints which can access sensitive data. 
However, without sufficient understanding and documentation of their API environment, organizations 
face several significant risks, including:

• APIs without sufficient logging cannot be monitored for abuse or compromise;

Application Programming Interfaces
Security Risks and Controls
Introduction
Application Programming Interfaces (APIs) provide a way for users and other applications to interact with 
software and data. It may be helpful to think of an API as a sort of broker; just like stock brokers receive buy 
and sell orders, software APIs use specific communication jargon — or protocols — to transact information 
requests. This analogy is useful to understand how a website API handles requests for a web application, by 
receiving instructions from people using web browsers (e.g., “show me the news front page in English, and 
only for my local region”), and then serve the information to the browser that corresponds with the specific 
request.

This request and response process is how APIs are able to present dynamic, data-driven web content as web 
pages in browsers. It allows for scalable application design, so that web pages can handle millions of 
requests and still provide a high-quality experience to users. However, API use presents a set of specific 
cybersecurity risk challenges that must be considered in the development, deployment, and maintenance of 
APIs. This whitepaper will focus on the best practices for securing APIs and the technologies and services 
that can be used to protect them.

API Risks and Controls
This whitepaper will discuss risks and controls associated with various API formats divided into three broad 
categories of risk, 1) Discoverability, 2) Input Validation, and 3) Access Control.

Discoverability Risks
Discoverability risks are not themselves a type of attack, but by publishing an API on the Internet and 
allowing connections from public internet systems, organizations allow users and threat actors to enumer-
ate, or discover the various functions of an API. In short, if you don’t understand exactly how your API works, 
but publish it, threat actors may discover things that your API will do that you are not even aware of! 

• APIs that are not well-documented may not be properly understood in order to accurately interpret 
what logs do exist;

• APIs that are not known to exist cannot be monitored for abuse or compromise.

Controls That Can Reduce Impact During a Breach
The amount of time that passes from the initial discovery of a breach until the breach has been remediated 
and the resumption of normal business activity is the strongest indicator of how much impact the organiza-
tion will take as a result of the breach. Getting back to “the day before the breach,” from an operational 
perspective, is the primary goal of any response activity. While discussion of specific controls described 
below is outside of the scope of this whitepaper, organizations can rely on the following controls to detect 
and respond to an intrusion that leverages API vulnerabilities and minimize the time it takes to recover from 
an intrusion:

• Managed Extended Detection and Response (MXDR)

• Specific, application-based alerting related to API use via MXDR SIEM

• Next Generation Antivirus and Endpoint Detection & Response

• Network Segmentation and Data Segregation

Right-of-Breach
Right-of-Breach API Security involves ensuring that response 
activities are well-informed, remediation activity is effective, 
and the application of lessons learned from an incident 
is effective.

Risks
During an Incident Response (IR), incident responders may not 
have an adequate understanding or sufficient logs to reach a 
determination on root-cause or the impact of any breach which 
may have occurred. IR engagements are often expensive and 
time consuming, and lack of API documentation may result in 
extended IR engagements or incomplete conclusions. Insuffi-
cient (or non-existent) logging may prevent incident responders 
from having the visibility necessary to determine what or how 
the breach occurred.

Controls
The following controls are critical in successfully resolving an 
intrusion that has leveraged web APIs:

• API Documentation

• Log Retention

• Incident Response Plan

• Tabletop Exercises

Input Validation Risks
APIs exist to facilitate interaction with data between two or more applications. Regardless of 
API format, almost every type of API attack is essentially the result of some type of input 

handling vulnerability, and the controls to mitigate those attacks are to validate the way APIs handle and 
respond to that input. The result of various Input Validation exploits can generally be divided into two catego-
ries, 1) Denial of Service Queries and 2) Injection and Extraction Queries.

Denial of Service Queries
API Denial-of-Service attacks are any type of API attack which has 
a goal of preventing authorized users access to the application or 
the data processed by the application.

Risks
API Denial-of-Service attacks are the result of excessive use of 
application resources. Web Applications process API requests on 
hardware that have finite resources (CPU, memory, storage), and 
if applications are not configured to limit requests to those 
resources, a Denial-of-Service may occur. The OWASP API Top 10 
categorizes these types of attacks as “Lack of Resources or 
Rate Limiting” vulnerabilities.2 Inadequate system resources and 
ineffective API rate limiting introduce the risk of inaccessible 
applications.

Controls
In order to minimize the risk of API Denial-of-Service attacks 
applications should implement:

• Static Application Security Testing (SAST) 

• Rate limiting to prevent system or network resource exhaustion

• Application delivery platforms, such as Docker, for simple resource management

• Web Application Firewalls (WAFs) 

• Enforced server-side validation of requests and record response count limitations 

• Enforced maximum data sizes and string lengths limitations

Injection and Extraction Queries
There are many different types of API attacks which can be categorized as “malicious queries”, but at a 
high-level the goal of nearly all Malicious API Queries is to either inject data or to extract data from the 
application or the systems where the application resides.

Injection Attack Risks
Injection attacks are any type of attack where the purpose is to add data to the application or the systems 
where the application resides. This includes attacks where the API is abused to inject a shell that could 
provide threat actors with remote access to the underlying system. Injection attacks also include inserting or 
modifying data to introduce incorrect, fraudulent, or invalid data. Organizations must consider the type of 
data their application processes and the potential for abuse if cybercriminals are able to insert or modify 
that data.

Extraction Attack Risks
Extraction attacks are any type of attack where the purpose is to exfiltrate data from the application or the 
systems where the application resides. Extraction attacks can include API abuse that reveals vulnerabilities, 
and privilege escalation through use of these vulnerabilities. Extraction attacks also include those which 
allow unauthorized individuals to access data from the application itself. 

Controls
There are many different types of API malicious query attacks, and each of these has corresponding preven-
tative controls. Implementing the preventative measures for the OWASP API Top 10 Vulnerabilities will 
significantly improve an organization's API risk posture surrounding malicious queries. However, organiza-
tions should also consider the following controls to limit their risk to Malicious API Queries:

• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

• Penetration Testing

Access Control
API Access Control Risks can broadly be categorized into 1) Authorization Risks and 2) Authentication Risks. 
Vulnerabilities such as Insecure Direct Object Reference (IDOR) are made possible via parameter tampering 
and can allow attackers unauthorized access to resources.

User validation plays another critical part in API security. The level of exploitation risk differs depending on 
the API format. Stateless APIs such as RPC, REST, and GraphQL pose a greater risk as sessions are stored 
client-side. Client-side tokens, such as JSON Web Tokens (when not properly signed), can be decoded to 
reveal potentially sensitive information and edited before being passed to the server. Unauthenticated API 
calls and data exposure can be the result of such errors and misconfigurations.

Controls
• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

• Web Application Penetration Testing

• Multi-Factor Authentication (MFA)

• API Gateway Systems

Contributors
Evans Foster, Jason Ingalls, Chase Theodos, Cyrus Robinson, Kim Buckley, and John Frasier

Cyber Innovation Center (CIC)
6300 Texas Street, Ste. 240, Bossier City, LA 71111

WWW.IINFOSEC.COM
(888) 860-0452 


